A multicomponent system is required for tetracycline-induced excision of Tn4555.

نویسندگان

  • Anita C Parker
  • C Jeffrey Smith
چکیده

Bacteroides spp. are the predominant organisms in the intestinal tract, and they also are important opportunistic pathogens. Antibiotic therapy of Bacteroides infections often is complicated by the prevalence of drug-resistant organisms which acquire resistance genes from a variety of mobile genetic elements including conjugative transposons (CTns) and mobilizable transposons (MTns). Tn4555 is an MTn that encodes beta-lactam resistance, and it is efficiently mobilized by the Bacteroides CTns via a tetracycline (TET)-inducible mechanism. In this study a model system with CTn341 and a Tn4555 minielement was used to examine Tn4555 excision from the chromosome. Using PCR and mobilization assays it was established that excision was stimulated by TET in the presence of CTn341. In order to determine which Tn4555 genes were required for excision, int, tnpA, tnpC, xis, and mobA mutants were examined. The results indicated that int plus two additional genes, tnpC and xis, were required for optimal excision. In addition, there was no requirement for the mobA gene, as had been shown for another MTn, NBU1. The Xis protein sequence is related to a family of plasmid excisionases, but the TnpC gene product did not match anything in the sequence databases. Evidence also was obtained that suggested that Xis is involved in the control of TET-induced excision and in control of mobilization by CTn341. Overall, these results indicate that excision of MTns is a complex process that requires multiple gene products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bacteroides mobilizable transposon Tn4555 integrates by a site-specific recombination mechanism similar to that of the gram-positive bacterial element Tn916.

The Bacteroides mobilizable transposon Tn4555 is a 12.2-kb molecule that encodes resistance to cefoxitin. Conjugal transposition is hypothesized to occur via a circular intermediate and is stimulated by coresident tetracycline resistance elements and low levels of tetracycline. In this work, the ends of the transposon were identified and found to consist of 12-bp imperfect inverted repeats, wit...

متن کامل

Identification of a circular intermediate in the transfer and transposition of Tn4555, a mobilizable transposon from Bacteroides spp.

Transmissible cefoxitin (FX) resistance in Bacteroides vulgatus CLA341 was associated with the 12.5-kb, mobilizable transposon, Tn4555, which encoded the beta-lactamase gene cfxA. Transfer occurred by a conjugation-like mechanism, was stimulated by growth of donor cells with tetracycline (TC), and required the presence of a Bacteroides chromosomal Tcr element. Transconjugants resistant to eithe...

متن کامل

An unexpected effect of tetracycline concentration: growth phase-associated excision of the Bacteroides mobilizable transposon NBU1.

Early studies of the Bacteroides mobilizable transposon NBU1 established that excision, the first step in NBU1 transfer, requires exposure of the cells to tetracycline. More recently, we found that excision is also associated with growth phase; even after exposure to tetracycline, excision is detectable only after the cells enter late exponential phase. The tetracycline effect is mediated by a ...

متن کامل

Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts.

We have shown previously that Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in the removal of UV-induced cyclobutane pyrimidine dimers from genomic DNA, but still proficient in the transcription-coupled repair pathway (Ford, J. M., and Hanawalt, P. C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8876-8880). We have now utilized monoclonal antibodies specific for cycl...

متن کامل

The p53-regulated cyclin-dependent kinase inhibitor, p21 (cip1, waf1, sdi1), is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts.

The p53 tumor suppressor gene is a transcriptional activator involved in cell cycle regulation, apoptosis, and DNA repair. We have shown that p53 is required for efficient nucleotide excision repair of UV-induced DNA photoproducts from global genomic DNA but has no effect on transcription-coupled repair. In order to evaluate whether p53 influences repair indirectly through cell cycle arrest fol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 2  شماره 

صفحات  -

تاریخ انتشار 2004